Evaluating Assistive Technology Needs: The SETT Framework
Kelly Charlebois, ATP, Clinical Manager, TechACCESS of RI

The professionals at TechACCESS of RI have varying specialties and backgrounds. All of the professionals approach the evaluation process following the SETT Framework developed by Joy Smiley Zabala. At the end of the assessment process, with the help of educational team members, TechACCESS will provide specific recommendations for educational team members to make informed decisions regarding a student’s need for assistive technology.

Description of the SETT Framework:
The SETT Framework is an organizational tool to help collaborative teams create Student-centered, Environmentally useful, and Tasks-focused Tool systems that foster the educational success of students with disabilities. The SETT Framework is built on the premise that in order to develop an appropriate system of assistive technology devices and services, teams must first gather information about the student, the customary environments in which the students spend their time, and the tasks that are required for the students to be active participants in the teaching learning processes that lead to educational success and support IEP goals.

S: The Student
• What is the functional area(s) of concern? What does the student need to be able to do that is difficult or impossible to do independently at this time?
• Current skills and abilities
• Special needs

E: The Environment
• Arrangement (instructional, physical)
• Supports currently available to student
• Materials and equipment consistently available and used
• Are there likely to be changes in the environment? Are there other environments that should be considered (i.e. home, community)

T: The Tasks
• What SPECIFIC tasks or activities occur in the student’s natural environments that enable progress toward mastery of IEP goals and objectives?
• What SPECIFIC tasks are required for active involvement in identified environments? What are the critical elements of these tasks?

T: The Tools
• Select specific tools for the student to trial in the natural environment
• Observe results, collect data and discuss the findings with members of the team